Abscisic acid regulation of guard-cell K+ and anion channels in Gbeta- and RGS-deficient Arabidopsis lines.

نویسندگان

  • Liu-Min Fan
  • Wei Zhang
  • Jin-Gui Chen
  • J Philip Taylor
  • Alan M Jones
  • Sarah M Assmann
چکیده

In mammals, basal currents through G protein-coupled inwardly rectifying K(+) (GIRK) channels are repressed by Galpha(i/o)GDP, and the channels are activated by direct binding of free Gbetagamma subunits released upon stimulation of Galpha(i/o)-coupled receptors. However, essentially all information on G protein regulation of GIRK electrophysiology has been gained on the basis of coexpression studies in heterologous systems. A major advantage of the model organism, Arabidopsis thaliana, is the ease with which knockout mutants can be obtained. We evaluated plants harboring mutations in the sole Arabidopsis Galpha (AtGPA1), Gbeta (AGB1), and Regulator of G protein Signaling (AtRGS1) genes for impacts on ion channel regulation. In guard cells, where K(+) fluxes are integral to cellular regulation of stomatal apertures, inhibition of inward K(+) (K(in)) currents and stomatal opening by the phytohormone abscisic acid (ABA) was equally impaired in Atgpa1 and agb1 single mutants and the Atgpa1 agb1 double mutant. AGB1 overexpressing lines maintained a wild-type phenotype. The Atrgs1 mutation did not affect K(in) current magnitude or ABA sensitivity, but K(in) voltage-activation kinetics were altered. Thus, Arabidopsis cells differ from mammalian cells in that they uniquely use the Galpha subunit or regulation of the heterotrimer to mediate K(in) channel modulation after ligand perception. In contrast, outwardly rectifying (K(out)) currents were unaltered in the mutants, and ABA activation of slow anion currents was conditionally disrupted in conjunction with cytosolic pH clamp. Our studies highlight unique aspects of ion channel regulation by heterotrimeric G proteins and relate these aspects to stomatal aperture control, a key determinant of plant biomass acquisition and drought tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abscisic acid regulation of guard-cell K and anion channels in G - and RGS-deficient Arabidopsis lines

In mammals, basal currents through G protein-coupled inwardly rectifying K (GIRK) channels are repressed by G i/oGDP, and the channels are activated by direct binding of free G subunits released upon stimulation of G i/o-coupled receptors. However, essentially all information on G protein regulation of GIRK electrophysiology has been gained on the basis of coexpression studies in heterologous s...

متن کامل

Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells.

Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are important signalling agents in both animals and plants. In plants, G proteins modulate numerous responses, including abscisic acid (ABA) and pathogen-associated molecular pattern (PAMP) regulation of guard cell ion channels and stomatal apertures. Previous analyses of mutants deficient in the sole canonical Arabidopsis Gα subunit...

متن کامل

The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells.

Stomatal guard cells control CO(2) uptake and water loss between plants and the atmosphere. Stomatal closure in response to the drought stress hormone, abscisic acid (ABA), results from anion and K(+) release from guard cells. Previous studies have shown that cytosolic Ca(2+) elevation and ABA activate S-type anion channels in the plasma membrane of guard cells, leading to stomatal closure. How...

متن کامل

Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione

The phytohormone abscisic acid (ABA) induces stomatal closure in response to drought stress, leading to reduction of transpirational water loss. A thiol tripeptide glutathione (GSH) is an important regulator of cellular redox homeostasis in plants. Although it has been shown that cellular redox state of guard cells controls ABA-mediated stomatal closure, roles of GSH in guard cell ABA signaling...

متن کامل

Slow Anion Channels in Arabidopsis Wild-Type and abil and abi2 Mutants

Abscisic acid (ABA) regulates vital physiological responses, and a number of events in the ABA signaling cascade remain to be identified. To allow quantitative analysis of genetic signaling mutants, patch-clamp experiments were developed and performed with the previously inaccessible Arabidopsis guard cells from the wild type and ABA-insensitive (abi) mutants. Slow anion channels have been prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 24  شماره 

صفحات  -

تاریخ انتشار 2008